首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   4篇
地球物理   14篇
地质学   22篇
海洋学   6篇
天文学   15篇
综合类   2篇
自然地理   2篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   5篇
  2012年   3篇
  2011年   4篇
  2010年   8篇
  2009年   3篇
  2008年   7篇
  2007年   2篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1980年   1篇
排序方式: 共有61条查询结果,搜索用时 390 毫秒
21.
22.
A cosmic dust detector for installation on a satellite is currently being developed using piezoelectric lead zirconate titanate (PZT), which can possess both functions of the collector and the transducer. The characteristics of the PZT detector have been studied by bombarding it with hypervelocity particles supplied by a Van de Graaff accelerator. The front surface of the detector used in this study was covered with a white paint to reduce any increase in the temperature due to the solar radiation. There was a linear relationship between the rise time of the signal produced by the detector and the particle's velocities, which were above 10 km/s on impact. This implies that individual particle velocities on impact can be inferred through the empirical formula derived from the data obtained from the PZT detector.  相似文献   
23.
Calcium-, aluminum-rich inclusions (CAIs) are often enriched in the heavy isotopes of magnesium and silicon relative to bulk solar system materials. It is likely that these isotopic enrichments resulted from evaporative mass loss of magnesium and silicon from early solar system condensates while they were molten during one or more high-temperature reheating events. Quantitative interpretation of these enrichments requires laboratory determinations of the evaporation kinetics and associated isotopic fractionation effects for these elements. The experimental data for the kinetics of evaporation of magnesium and silicon and the evaporative isotopic fractionation of magnesium is reasonably complete for Type B CAI liquids (Richter F. M., Davis A. M., Ebel D. S., and Hashimoto A. (2002) Elemental and isotopic fractionation of Type B CAIs: experiments, theoretical considerations, and constraints on their thermal evolution. Geochim. Cosmochim. Acta66, 521-540; Richter F. M., Janney P. E., Mendybaev R. A., Davis A. M., and Wadhwa M. (2007a) Elemental and isotopic fractionation of Type B CAI-like liquids by evaporation. Geochim. Cosmochim. Acta71, 5544-5564.). However, the isotopic fractionation factor for silicon evaporating from such liquids has not been as extensively studied. Here we report new ion microprobe silicon isotopic measurements of residual glass from partial evaporation of Type B CAI liquids into vacuum. The silicon isotopic fractionation is reported as a kinetic fractionation factor, αSi, corresponding to the ratio of the silicon isotopic composition of the evaporation flux to that of the residual silicate liquid. For CAI-like melts, we find that αSi = 0.98985 ± 0.00044 (2σ) for 29Si/28Si with no resolvable variation with temperature over the temperature range of the experiments, 1600-1900 °C. This value is different from what has been reported for evaporation of liquid Mg2SiO4 (Davis A. M., Hashimoto A., Clayton R. N., and Mayeda T. K. (1990) Isotope mass fractionation during evaporation of Mg2SiO4. Nature347, 655-658.) and of a melt with CI chondritic proportions of the major elements (Wang J., Davis A. M., Clayton R. N., Mayeda T. K., and Hashimoto A. (2001) Chemical and isotopic fractionation during the evaporation of the FeO-MgO-SiO2-CaO-Al2O3-TiO2-REE melt system. Geochim. Cosmochim. Acta65, 479-494.). There appears to be some compositional control on αSi, whereas no compositional effects have been reported for αMg. We use the values of αSi and αMg, to calculate the chemical compositions of the unevaporated precursors of a number of isotopically fractionated CAIs from CV chondrites whose chemical compositions and magnesium and silicon isotopic compositions have been previously measured.  相似文献   
24.
Abstract— We performed a systematic high‐precision secondary ion mass spectrometry 26Al‐26Mg isotopic study for 11 ferromagnesian chondrules from the highly unequilibrated ordinary chondrite Bishunpur (LL3.1). The chondrules are porphyritic and contain various amounts of olivine and pyroxene and interstitial plagioclase and/or glass. The chemical compositions of the chondrules vary from FeO‐poor to FeO‐rich. Eight chondrules show resolvable 26Mg excesses with a maximum δ26Mg of ?1% in two chondrules. The initial 26Al/27Al ratios inferred for these chondrules range between (2.28 ± 0.73) × 10?5 to (0.45 ± 0.21) × 10?5. Assuming a homogeneous distribution of Al isotopes in the early solar system, this range corresponds to ages relative to CAIs between 0.7 ± 0.2 Ma and 2.4+0.7?0.4 Ma. The inferred total span of the chondrule formation ages is at least 1 Ma, which is too long to form chondrules by the X‐wind. The initial 26Al/27Al ratios of the chondrules are found to correlate with the proportion of olivine to pyroxene suggesting that olivine‐rich chondrules formed earlier than pyroxene‐rich chondrules. Though we do not have a completely satisfactory explanation of this correlation we tentatively interpret it as a result of evaporative loss of Si from earlier generations of chondrules followed by addition of Si to the precursors of later generation chondrules.  相似文献   
25.
Concentration and stable isotopic compositions (δ 18O) of dissolved O2 were measured in seawater samples collected from the Philippine Sea in June 2006. The in-situ O2 consumption rate and the isotopic fractionation factor (α r ) during dissolved O2 consumption were obtained from field observations by applying a vertical one-dimensional advection diffusion model to the deep water mass of about 1000–4000 m. The average O2 consumption rate and α r were, respectively, 0.11 ± 0.07 μmol kg−1yr−1 and 0.990 ± 0.001. These estimated values agree well with values from earlier estimations of Pacific deep water. The in-situ O2 consumption rates are two or more times higher north of 20°N, although the value of α r was not significantly different between the north and south. Its levels varied rapidly in the water mass of less about 2000 m depth. These results suggest that organic matter from the continent imparts a meaningful contribution to the upper water in the northern part of the area; it might produce the strong O2 minimum that is evident in the water mass from about 1000–2000 m in the northern part of the Philippine Sea.  相似文献   
26.
For decades, the scientific community has conducted essential background research and developed appropriate modeling tools in support of an ecosystem-based approach to natural resource management. Resource managers and the public, however, lack a clear roadmap for working with scientists to move beyond the traditional single-species approach. With current management processes so strongly focused on working in a species-by-species framework, there are entrenched cultural and institutional challenges to shifting those processes toward ecosystem-based management. We propose using the integrated ecosystem assessment process to both develop new management ideas for a particular ecosystem, and to help shift public policy processes and perceptions to embrace ecosystem approaches to management.  相似文献   
27.
Abstract– The ion microprobe is the only technique capable of determining high‐precision stable isotope ratios in individual tiny extraterrestrial particles (≤100 μm in diameter), but these small samples present special analytical challenges. We produced a new sample holder disk with multiple holes (three holes and seven holes), in which epoxy disks containing a single unknown sample and a standard grain are cast and polished. Performance tests for oxygen two‐isotope analyses using San Carlos olivine standard grains show that the new multiple‐hole disks allow accurate analysis of tiny particles if the particles are located within the 500 μm and 1 mm radius of the center of holes for seven‐hole and three‐hole disks, respectively. Using the new seven‐hole disk, oxygen three‐isotope ratios of eight magnesian cryptocrystalline chondrules (approximately 100 μm in diameter) from the Sayh al Uhaymir (SaU) 290 CH chondrite were analyzed by ion microprobe at the University of Wisconsin. Five out of eight chondrules have nearly identical oxygen isotope ratios (Δ17O = ?2.2 ± 0.6‰; 2SD), which is consistent with those of magnesian cryptocrystalline chondrules in CH/CB and CB chondrites, suggesting a genetic relationship, i.e., formation by a common (possibly impact) heating event. The other three chondrules have distinct oxygen isotope ratios (Δ17O values from ?6.4‰ to +2.2‰). Given that similar variation in Δ17O values was observed in type I porphyritic chondrules in a CH/CB chondrite, the three chondrules may have formed in the solar nebula, similar to the type I porphyritic chondrules.  相似文献   
28.
Multiple origins of zircons in jadeitite   总被引:1,自引:1,他引:0  
Jadeitites form from hydrothermal fluids during high pressure metamorphism in subduction environments; however, the origin of zircons in jadeitite is uncertain. We report ion microprobe analyses of δ18O and Ti in zircons, and bulk δ18O data for the jadeitite whole-rock from four terranes: Osayama serpentinite mélange, Japan; Syros mélange, Greece; the Motagua Fault zone, Guatemala; and the Franciscan Complex, California. In the Osayama jadeitite, two texturally contrasting groups of zircons are identified by cathodoluminescence and are distinct in δ18O: featureless or weakly zoned zircons with δ18O = 3.8 ± 0.6‰ (2 SD, VSMOW), and zircons with oscillatory or patchy zoning with higher δ18O = 5.0 ± 0.4‰. Zircons in phengite jadeitite from Guatemala and a jadeitite block from Syros have similar δ18O values to the latter from Osayama: Guatemala zircons are 4.8 ± 0.7‰, and the Syros zircons are 5.2 ± 0.5‰ in jadeitite and 5.2 ± 0.4‰ in associated omphacitite, glaucophanite and chlorite-actinolite rinds. The δ18O values for most zircons above fall within the range measured by ion microprobe in igneous zircons from oxide gabbros and plagiogranites in modern ocean crust (5.3 ± 0.8‰) and measured in bulk by laser fluorination of zircons in equilibrium with primitive magma compositions or the mantle (5.3 ± 0.6‰). Titanium concentrations in these zircons vary between 1 and 19 ppm, within the range for igneous zircons worldwide. Values of δ18O (whole-rock) ≅ δ18O (jadeite) and vary from 6.3 to 10.1‰ in jadeitites in all four areas.  相似文献   
29.
We report high precision SIMS oxygen three isotope analyses of 36 chondrules from some of the least equilibrated LL3 chondrites, and find systematic variations in oxygen isotope ratios with chondrule types. FeO-poor (type I) chondrules generally plot along a mass dependent fractionation line (Δ17O ∼ 0.7‰), with δ18O values lower in olivine-rich (IA) than pyroxene-rich (IB) chondrules. Data from FeO-rich (type II) chondrules show a limited range of δ18O and δ17O values at δ18O = 4.5‰, δ17O = 2.9‰, and Δ17O = 0.5‰, which is slightly 16O-enriched relative to bulk LL chondrites (Δ17O ∼ 1.3‰). Data from four chondrules show 16O-rich oxygen isotope ratios that plot near the CCAM (Carbonaceous Chondrite Anhydrous Mineral) line. Glass analyses in selected chondrules are systematically higher than co-existing minerals in both δ18O and Δ17O values, whereas high-Ca pyroxene data in the same chondrule are similar to those in olivine and pyroxene phenocrysts.Our results suggest that the LL chondrite chondrule-forming region contained two kinds of solid precursors, (1) 16O-poor precursors with Δ17O > 1.6‰ and (2) 16O-rich solid precursors derived from the same oxygen isotope reservoir as carbonaceous chondrites. Oxygen isotopes exhibited open system behavior during chondrule formation, and the interaction between the solid and ambient gas might occur as described in the following model. Significant evaporation and recondensation of solid precursors caused a large mass-dependent fractionation due to either kinetic or equilibrium isotope exchange between gas and solid to form type IA chondrules with higher bulk Mg/Si ratios. Type II chondrules formed under elevated dust/gas ratios and with water ice in the precursors, in which the ambient H2O gas homogenized chondrule melts by isotope exchange. Low temperature oxygen isotope exchange may have occurred between chondrule glasses and aqueous fluids with high Δ17O (∼5‰) in LL the parent body. According to our model, oxygen isotope ratios of chondrules were strongly influenced by the local solid precursors in the proto-planetary disk and the ambient gas during chondrule melting events.  相似文献   
30.
Abstract– The Northwest Africa (NWA) 1500 meteorite is an olivine‐rich achondrite containing approximately 2–3 vol% augite, 1–2 vol% plagioclase, 1 vol% chromite, and minor orthopyroxene, Cl‐apatite, metal and sulfide. It was originally classified as a ureilite, but is currently ungrouped. We re‐examined the oxygen three‐isotope composition of NWA 1500. Results of ultra‐high precision (~0.03‰ for Δ17O) laser fluorination analyses of two bulk chips, and high precision (~0.3‰) secondary ion mass spectrometry (SIMS) analyses of olivine and plagioclase in a thin section, show that the oxygen isotope composition of NWA 1500 (Δ17O = ?0.22‰ from bulk samples and ?0.18 ± 0.06‰ from 16 mineral analyses) is within the range of brachinites. We compare petrologic and geochemical characteristics of NWA 1500 with those of brachinites and other olivine‐rich primitive achondrites, including new petrographic, mineral compositional and bulk compositional data for brachinites Hughes 026, Reid 013, NWA 5191, NWA 595, and Brachina. Modal mineral abundances, texture, olivine and pyroxene major and minor element compositions, plagioclase major element compositions, rare earth element abundances, and siderophile element abundances of NWA 1500 are within the range of those in brachinites and, in most cases, well distinguished from those of winonaites/IAB silicates, acapulcoites/lodranites, ureilites, and Divnoe. NWA 1500 shows evidence of internal reduction, in the form of reversely zoned olivine (Fo ~65–73 core to rim) and fine‐grained intergrowths of orthopyroxene + metal along olivine grain margins. The latter also occur in Reid 013, Hughes 026, NWA 5191, and NWA 595. We argue that reduction (olivine→enstatite + Fe0 + O2) is the best hypothesis for their origin in these samples as well. We suggest that NWA 1500 should be classified as a brachinite, which has implications for the petrogenesis of brachinites. Fe‐Mn‐Mg compositions of brachinite olivine provide evidence of redox processes among bulk samples. NWA 1500 provides evidence for redox processes on a smaller scale as well, which supports the interpretation that these processes occurred in a parent body setting. SIMS data for 26Al‐26Mg isotopes in plagioclase in NWA 1500 show no 26Mg excesses beyond analytical uncertainties (1–2‰). The calculated upper limit for the initial 26Al/27Al ratio of the plagioclase corresponds to an age younger than 7 Ma after CAI. Compared to 53Mn‐53Cr data for Brachina ( Wadhwa et al. 1998b ), this implies either a much younger formation age or a more protracted cooling history. However, Brachina is atypical and this comparison may not extend to other brachinites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号